Search results for "Examples of Markov chains"
showing 5 items of 5 documents
Statistics of transitions for Markov chains with periodic forcing
2013
The influence of a time-periodic forcing on stochastic processes can essentially be emphasized in the large time behaviour of their paths. The statistics of transition in a simple Markov chain model permits to quantify this influence. In particular the first Floquet multiplier of the associated generating function can be explicitly computed and related to the equilibrium probability measure of an associated process in higher dimension. An application to the stochastic resonance is presented.
QUANTITATIVE CONVERGENCE RATES FOR SUBGEOMETRIC MARKOV CHAINS
2015
We provide explicit expressions for the constants involved in the characterisation of ergodicity of subgeometric Markov chains. The constants are determined in terms of those appearing in the assumed drift and one-step minorisation conditions. The results are fundamental for the study of some algorithms where uniform bounds for these constants are needed for a family of Markov kernels. Our results accommodate also some classes of inhomogeneous chains.
The pianigiani-yorke measure for topological markov chains
1997
We prove the existence of a Pianigiani-Yorke measure for a Markovian factor of a topological Markov chain. This measure induces a Gibbs measure in the limit set. The proof uses the contraction properties of the Ruelle-Perron-Frobenius operator.
Convergence of Markov Chains
2020
We consider a Markov chain X with invariant distribution π and investigate conditions under which the distribution of X n converges to π as n→∞. Essentially it is necessary and sufficient that the state space of the chain cannot be decomposed into subspaces that the chain does not leave, or that are visited by the chain periodically; e.g., only for odd n or only for even n.
Income distribution dynamics: monotone Markov chains make light work
1995
This paper considers some aspects of the dynamics of income distributions by employing a simple Markov chain model of income mobility. The main motivation of the paper is to introduce the techniques of “monotone” Markov chains to this field. The transition matrix of a discrete Markov chain is called monotone if each row stochastically dominates the row above it. It will be shown that by embedding the dynamics of the income distribution in a monotone Markov chain, a number of interesting results may be obtained in a straightforward and intuitive fashion.